The Passive Film Growth Mechanism of New Corrosion-Resistant Steel Rebar in Simulated Concrete Pore Solution: Nanometer Structure and Electrochemical Study
نویسندگان
چکیده
An elaborative study was carried out on the growth mechanism and properties of the passive film for a new kind of alloyed corrosion-resistant steel (CR steel). The passive film naturally formed in simulated concrete pore solutions (pH = 13.3). The corrosion resistance was evaluated by various methods including open circuit potential (OCP), linear polarization resistance (LPR) measurements, and electrochemical impedance spectroscopy (EIS). Meanwhile, the 2205 duplex stainless steel (SS steel) was evaluated for comparison. Moreover, the passive film with CR steel was studied by means of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Atomic Force Microscope (AFM), and the Mott‑Schottky approach. The results showed that the excellent passivity of CR steel could be detected in a high alkaline environment. The grain boundaries between the fine passive film particles lead to increasing Cr oxide content in the later passivation stage. The filling of cation vacancies in the later passivation stage as well as the orderly crystalized inner layer contributed to the excellent corrosion resistance of CR steel. A passive film growth model for CR steel was proposed.
منابع مشابه
INVESTIGATION ON THE MIXTURE OF CALCIUM AND AMMONIUM NITRATES AS STEEL CORROSION INHIBITOR IN SIMULATED CONCRETE PORE SOLUTION
Abstract: Despite having a number of advantages, reinforced concrete can suffer rebar corrosion in high–chloride media, resulting in failure of reinforced concrete structures. In this research the corrosion inhibition capability of the mixture of calcium and ammonium nitrate of steel rebar corrosion was investigated in the simulated concrete pore solution. Cyclic polarization and Electroche...
متن کاملThe Effect of Chloride Ions Concentration on the Electrochemical Behavior of AISI 410 Stainless Steels in Simulated Concrete Pore Solution
The effect of chloride ions concentration on the electrochemical behavior of AISI 410 stainless steel in the simulated concrete pore (0.1 M NaOH + 0.1 M KOH) solution was investigated by various electrochemical methods such as Potentiodynamic polarization, Mott–Schottky analysis and electrochemical impedance spectroscopy (EIS). Potentiodynamic polarization curves revealed that increasing chlori...
متن کاملElectrochemical and passivation behavior investigation of ferritic stainless steel in simulated concrete pore media
The applications of stainless steel are one of the most reliable solutions in concrete structures to reduce chloride-induced corrosion problems and increase the structures service life, however, due to high prices of nickel, especially in many civil engineering projects, the austenitic stainless steel is replaced by the ferritic stainless steels. Compared with austenite stainless steel, the fer...
متن کاملInfluence of Organic Inhibitor on Corrosion Resistance of Steel in Simulated Concrete Pore Solution
Organic corrosion inhibitor is one of lower cost technologies that limit the deterioration of concrete structures. The influence of a newly prepared organic corrosion inhibitor on the corrosion behavior of carbon steel in simulated concrete pore solution was investigated by polarization curves, electrochemical impedance spectroscopy, and so on. The effect of organic corrosion inhibitors on conc...
متن کاملCorrosion Performance of Stainless Steel Clad Rebar in Simulated Pore Water and Concrete
The corrosion performance of stainless steel clad reinforcing bar (SCR) was investigated. Corrosion potential of SCR in various alkaline media as a function of time was measured periodically and corrosion rates were estimated using Electrochemical Impedance Spectroscopy (EIS). At room temperature, SCR without cladding breaks was free of corrosion for up to one year in all the testing conditions...
متن کامل